504 research outputs found

    Thermal formation of carbynes

    Full text link
    We simulate the formation of spsp carbon chains (carbynes) by thermal decomposition of sp2sp^2 carbon heated by a hot discharge plasma, by means of tight-binding molecular dynamics. We obtain and analyze the total quantity of carbynes and their length distribution as a function of temperature and density

    Jahn-Teller Spectral Fingerprint in Molecular Photoemission: C60

    Get PDF
    The h_u hole spectral intensity for C60 -> C60+ molecular photoemission is calculated at finite temperature by a parameter-free Lanczos diagonalization of the electron-vibration Hamiltonian, including the full 8 H_g, 6 G_g, and 2 A_g mode couplings. The computed spectrum at 800 K is in striking agreement with gas-phase data. The energy separation of the first main shoulder from the main photoemission peak, 230 meV in C60, is shown to measure directly and rather generally the strength of the final-state Jahn-Teller coupling.Comment: 5 pages, 3 figure

    Mesophases in Nearly 2D Room-Temperature Ionic Liquids

    Get PDF
    Computer simulations of (i) a [C12mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C12mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C4mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.Comment: 24 pages 10 figure

    Dependence of boundary lubrication on the misfit angle between the sliding surfaces

    Full text link
    Using molecular dynamics based on Langevin equations with a coordinate- and velocity-dependent damping coefficient, we study the frictional properties of a thin layer of "soft" lubricant (where the interaction within the lubricant is weaker than the lubricant-substrate interaction) confined between two solids. At low driving velocities the system demonstrates stick-slip motion. The lubricant may or may not be melted during sliding, thus exhibiting either the "liquid sliding" (LS) or the "layer over layer sliding" (LoLS) regimes. The LoLS regime mainly operates at low sliding velocities. We investigate the dependence of friction properties on the misfit angle between the sliding surfaces and calculate the distribution of static frictional thresholds for a contact of polycrystalline surfaces.Comment: 8 pages, 11 figure

    Static friction on the fly: velocity depinning transitions of lubricants in motion

    Full text link
    The dragging velocity of a model solid lubricant confined between sliding periodic substrates exhibits a phase transition between two regimes, respectively with quantized and with continuous lubricant center-of-mass velocity. The transition, occurring for increasing external driving force F_ext acting on the lubricant, displays a large hysteresis, and has the features of depinning transitions in static friction, only taking place on the fly. Although different in nature, this phenomenon appears isomorphic to a static Aubry depinning transition in a Frenkel-Kontorova model, the role of particles now taken by the moving kinks of the lubricant-substrate interface. We suggest a possible realization in 2D optical lattice experiments.Comment: 5 pages, 4 figures, revtex, in print in Phys. Rev. Let

    Exact zero-point energy shift in the e⊗(n E)e\otimes (n~E), t⊗(n H)t\otimes (n~H) many modes dynamic Jahn-Teller systems at strong coupling

    Full text link
    We find the exact semiclassical (strong coupling) zero-point energy shifts applicable to the e⊗(nE)e\otimes (n E) and t⊗(nH)t\otimes (n H) dynamic Jahn-Teller problems, for an arbitrary number nn of discrete vibrational modes simultaneously coupled to one single electronic level. We also obtain an analytical formula for the frequency of the resulting normal modes, which has an attractive and apparently general Slater-Koster form. The limits of validity of this approach are assessed by comparison with O'Brien's previous effective-mode approach, and with accurate numerical diagonalizations. Numerical values obtained for t⊗(nH)t\otimes (n H) with n=8n =8 and coupling constants appropriate to C60−_{60}^- are used for this purpose, and are discussed in the context of fullerene.Comment: 20 pages, 4 ps figure

    Low-energy excitations of a linearly Jahn-Teller coupled orbital quintet

    Full text link
    The low-energy spectra of the single-mode h x (G+H) linear Jahn-Teller model is studied by means of exact diagonalization. Both eigenenergies and photoemission spectral intensities are computed. These spectra are useful to understand the vibronic dynamics of icosahedral clusters with partly filled orbital quintet molecular shells, for example C60 positive ions.Comment: 14 pages revte

    Interplay of Orbital Degeneracy and Superconductivity in a Molecular Conductor

    Full text link
    We study electron propagation in a molecular lattice model. Each molecular site involves doubly degenerate electronic states coupled to doubly degenerate molecular vibration, leading to a so--called E-e type of Jahn-Teller Hamiltonian. For weak electron-phonon coupling and in the anti-adiabatic limit we find that the orbital degeneracy induces an intersite pairing mechanism which is absent in the standard non-degenerate polaronic model. In this limit we analyse the model in the presence of an additional on-site repulsion and we determine, within BCS mean field theory, the region of stability of superconductivity. In one dimension, where powerful analytical techniques are available, we are able to calculate the phase diagram of the model both for weak and for strong electron-phonon coupling.Comment: 11 pages, REVTEX style, 3 compressed figures adde
    • …
    corecore